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Abstract
The requirement of Hermiticity of a quantum mechanical Hamiltonian, for
the description of physical processes with real eigenvalues which has been
challenged notably by Carl Bender, is examined for the case of a Fock space
Hamiltonian which is bilinear in two creation and annihilation operators. An
interpretation of this model as a Schrödinger operator leads to an identification
of the Hermitian form of the Hamiltonian as the Landau model of a charged
particle in a plane, interacting with a constant magnetic field at right angles
to the plane. When the parameters of the Hamiltonian are suitably adjusted
to make it non-Hermitian, the model represents two harmonic oscillators at
right angles interacting with a constant magnetic field in the third direction,
but with a pure imaginary coupling, and real energy eigenvalues. It is now PT
symmetric. Multiparticle states are investigated.

PACS numbers: 03.65.Fd, 03.65.Ge, 11.30.−j

1. Introduction

The familiar Hamiltonians of quantum mechanics may be analysed for symmetries either in
terms of pure matrix algebra, or else in terms of a Fock space representation, which generally
leads to a more physical interpretation of the mathematical manipulations. In particular, any
Hamiltonian constructed from a Fock space of n fermionic creation and annihilation operators
may be transcribed in terms of a finite-dimensional matrix of dimension 2

n
2 ×2

n
2 because such

operators can always be constructed from gamma matrices, which admit a well-known matrix
representation. The inverse of this construction, to obtain a Fock space representation of any
finite-dimensional Hermitian matrix, can be done by embedding the matrix in a larger one
of suitable dimension to admit representations of the canonical anti-commutation relations.
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In fact, in view of the existence of a matrix representation for Hamiltonians the transcription
is merely an exercise in matrix algebra for undergraduates. However, the situation is more
complicated when the Hamiltonian is no longer Hermitian. It is a central tenet of quantum
theory and quantum field theory that the Hamiltonian should be Hermitian, but this is not
in fact necessary to maintain real eigenvalues, as has been demonstrated in recent years,
notably by Bender and Boettcher [2]. However, if the eigenvalues are all discrete and real
and their eigenvectors span the full space, there will exist, in general, an infinity of Hermitian
Hamiltonians (possibly infinite dimensional) which are unitarily equivalent to the diagonal
(real) form. They are equivalent up to a more general (not necessarily unitary) transformation
to the initial Hamiltonian.

If all the eigenvalues are real and their eigenvectors span a subspace S of the initial
space (say finite dimensional to make things simpler) there exists, in general, an infinity
of Hamiltonians unitarily equivalent to a Jordan form (or a generalized Jordan form in the
infinite-dimensional case) and equivalent up to a more general (non-necessary unitary) to the
initial Hamiltonian. These Hamiltonians projected to the subspace S are Hermitian.

If some of the eigenvalues are discrete and real, this same statement will obviously apply
in the subspace of the corresponding eigenvectors. We shall study a simple example which
illustrates this in a physical context, that of the Landau problem of a particle in two dimensions
moving under the influence of a constant magnetic field in the third direction [5, 6], and show
that this model exhibits the features which have been found for PT symmetric non-Hermitian
systems. In particular, while the usual model is Hermitian, with a real magnetic coupling, a
deformation of the parameters in this model leads under certain systems to a non-Hermitian
system with real eigenvalues and an imaginary coupling. In this respect it recalls to mind the
work of Hollowood [4], who showed that affine Toda field theory with pure imaginary coupling
possesses real energy levels. This system represents an anisotropic oscillator in interaction
with a constant magnetic field. Some discussion is given of the case of transition between the
Hermitian and non-Hermitian cases, where two of the eigenvalues coincide, and the associated
matrix cannot be fully diagonalized, but can be reduced by similarity transformations only to
Jordan normal form.

2. Two-dimensional case

Take a 2 × 2 matrix

M =
[
s1 s3

s4 s2

]
. (1)

Then any finite-dimensional matrix eigenvalue problem can always be transformed to an
infinite-dimensional quantum mechanical eigenvalue problem by the introduction of Fock
space creation and annihilation operators a

†
i , aj , so that matrix Mij turns into the Hamiltonian∑

i,j a
†
i Mijaj . This gives in this case the Hamiltonian

H = s1a
†
1a1 + s2a

†
2a2 + s3a

†
1a2 + s4a

†
2a1, (2)

where the coefficients si, i = 1, . . . , 4 are complex constants, and a
†
i , ai are two creation

and annihilation operators satisfying the usual canonical commutation relations, with only the
following nonzero commutators:

aia
†
j − a

†
j ai = δij . (3)

The vacuum state |0〉 is defined as usual as the normalized state which is annihilated by the a

ai |0〉 = O (4)

where O is the zero norm state in the Hilbert space.
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3. Diagonalization

Take Hamiltonian (2) in the generic case for arbitrary complex values of si . Define

� =
√

(s1 − s2)2 + 4s3s4; λ± = 1
2 (s2 − s1) ± 1

2�, (5)

and construct the linear combinations

α+
1 = n1

(
s3

λ+
a
†
1 + a

†
2

)
(6)

α+
2 = n2

(
s3

λ−
a
†
1 + a

†
2

)
(7)

α1 = 1

n1

(
s4

�
a1 +

λ+

�
a2

)
(8)

α2 = 1

n2

(−s4

�
a1 +

−λ−
�

a2

)
(9)

where n1 and n2 are arbitrary factors. In this construction, α+
j denotes a creation operator,

which should not be thought of as the Hermitian conjugate of αj which is also an annihilation
operator, since in the generic case (more precisely if s3/s

∗
4 �= (s2 − s1)/(s2 − s1)

∗) one finds
that α

†
j cannot be made equal to α+

j . However the properties

〈0|αiα
+
j |0〉 = δij (10)

hold. Indeed the αj and α+
j satisfy exactly the same commutation relations as do the a, because

matrix (1) can be diagonalized by a similarity transform.
This implies that observables in the theory can be calculated, as n-particle states will have

the form

|r, n − r〉 = 1√
r!(n − r)!

(
α+

1

)r (
α+

2

)n−r |0〉. (11)

These states are orthogonal to the following adjoint states:

|adj[r, n − r]〉 = 1√
r!(n − r)!

(
α
†
1

)r(
α
†
2

)n−r |0〉 (12)

in the sense that

〈adj[p′, q ′]|p, q〉 = δp′pδq ′q . (13)

The limitation of the use of non-Hermitian Hamiltonians is that the notion of + conjugation
and reality of eigenvalues is specific to the Hamiltonian used and is not universal as is the case
with Hermitian conjugation, as Bender et al have remarked [1]. Hermiticity also guarantees
reality of eigenvalues, independently of the details of the Hamiltonian. This universality is a
consequence of the fact that the inverse of a unitary matrix, which diagonalizes a Hermitian
matrix, is its own Hermitian conjugate, i.e. since U † = U−1 for a unitary matrix U the
columns of U † are orthogonal to the rows of U, the operation of Hermitian conjugation works
independently of the Hermitian matrix to be diagonalized. In the case of a 2 × 2 matrix H we
have

H = s1a
†
1a1 + s2a

†
2a2 + s3a

†
1a2 + s4a

†
2a1

= 1
2 (s1 + s2 + �)α+

1 α1 + 1
2 (s1 + s2 − �)α+

2 α2. (14)
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This construction shows that the n-particle states have energies of the form

En,m = n

2
(s1 + s2) +

m

2
�, (15)

where m runs from −n to n in steps of 2. There are several interesting features of this result.
The eigenvalues will be real and distinct provided s1 + s2 is real and (s1 − s2)

2 + 4s3s4 is
real and positive, thus even when the Hamiltonian is non-Hermitian, the eigenvalues may be
real. When this latter factor is zero, then the eigenvalues are degenerate. Then, either the
Hamiltonian is proportional to the unit matrix (s1 = s2, s3 = s4 = 0) or, if at least one off-
diagonal element is nonzero, there is one eigenvector only and the Hamiltonian can be brought
to the normal form (s ′

1 = s ′
2, s

′
3 = 0, s ′

4 = 1). These cases are briefly discussed later. For
non-Hermitian Hamiltonians, Bender et al [1] have analysed the existence of a Parity operator
P and a conjugation matrix PT . These crucial issues will be taken up and generalized after
we demonstrate a simple application to a physical example of the 2 × 2 situation detailed
above.

4. Schrödinger interpretation

The above problem is equivalent up to a constant energy shift to solving a Schrödinger
equation for a particular quantum mechanical problem; set ai = pi + iqi etc; then the problem
is equivalent to

H = −s1

(
∂2

∂x2
− x2

)
− s2

(
∂2

∂y2
− y2

)
− (s3 + s4)

(
∂2

∂x∂y
− xy

)
+ (s3 − s4)

(
x

∂

∂y
− y

∂

∂x

)
(16)

up to a c-number addition. If s3 = −s4, then this is the Landau problem of a particle in a plane
coupled to a magnetic field in the perpendicular direction, through its angular momentum with
possibly an additional linear central force. To see this consider a constant magnetic field with

potential �A = B

2
(x) in the Hamiltonian

H = 1

2m

(
�p +

e

c
�A
)2

= 1

2m

(
p2

x + p2
y +

(
eB

2c

)2

(x2 + y2) +
eB

c
(pyx − pxy)

)
. (17)

and make the identifications; s1 = s2 = 1/(2m), and s3 = −s4 is pure imaginary. This
Hamiltonian is Hermitian with real eigenvalues. However, the choice of s3 = −s4 and
real, eliminates the xy cross terms and also gives real eigenvalues, provided that the factor
(s1 − s2)

2 − 4s2
4 is positive which necessarily entails that s1 �= s2. In this case the Hamiltonian

is non-Hermitian and it represents a constant magnetic field coupled to an anisotropic oscillator
with pure imaginary coupling. In all the examples Bender et al [2, 3] have constructed with
non-Hermitian Hamiltonians and real eigenvalues the Hamiltonian is PT symmetric. Dorey,
Dunning and Tateo [7] have recently given a proof that the spectra of a number of PT
invariant Hamiltonians are entirely real. However, on its own PT invariance only implies
real or complex conjugate pairs of eigenvalues. This is the situation under consideration here
as PT invariance means invariance under (x, y) → (−x,−y) and i → −i. At the same
time �p does not change. The Hamiltonian will then be PT symmetric since B → B, but the
eigenvalues may be complex conjugate if the positivity condition is violated.
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5. Real eigenvalue conditions

As is well known, the eigenvalues of a Hermitian matrix are always real. In general the
condition for the reality of eigenvalues depends on more specific details of the matrix. However
in the case of an n × n matrix H necessary conditions for the existence of real eigenvalues are
given in terms of powers of H by

Tr(H r) = real; r = 1, 2, . . . , n. (18)

This result follows simply from the observations that the characteristic polynomial of H, being
an invariant under similarity transformations, has coefficients expressible in terms of the traces
of powers of H and that if all the eigenvalues are real, H † must have the same eigenvalues as
H. A further necessary and sufficient condition for an arbitrary 2 × 2 matrix to possess real
eigenvalues is given by the requirement that 2Tr H 2 − (Tr H)2 � 0. This expression is just a
translation into invariant form of the condition of given in section 3 after (15). Unfortunately,
an invariant criterion even in the three-dimensional case is rather complicated. When the
traces are real and � = 0, the two-dimensional matrix H may be expressed as

H = 1
2 (s1 + s2)11 + A (19)

where A is null or the zero matrix; i.e. Tr A = Tr A2 = 0 or A = 0. In the former case the
matrix is equivalent by a change of basis to a Jordan normal form

H =
[
a 1
0 a

]
. (20)

6. ‘Conjugation’ and ‘parity’: finite-dimensional case

In this section, we extend the notions of ‘conjugation’, and/or of ‘parity’ introduced in [2] to
arbitrary finite-dimensional matrices representing the Hamiltonian with real eigenvalues. In
certain cases the arguments can be extended immediately to infinite-dimensional spaces (see
section 8 for an example). It is also not difficult to extend them to the case where some of
the eigenvalues are equal or are complex or when the starting matrix Md below has parts in
a Jordan form. These concepts are familiar in the case of Hermitian Hamiltonians, and are
discussed here to make contact with the important property of PT symmetry discussed by
Bender et al.

We first recall a few well-known facts. Let Md be a real diagonal matrix in p dimensions
(with p distinct real diagonal elements µi), and let N be an arbitrary invertible p × p complex
matrix. Let the scalar product of the column eigenvectors ψ and φ be defined by the obvious

〈ψ |φ〉 = ψ †φ (21)

where A† = (A∗)tp is the Hermitian conjugate matrix.
For any matrix M which has the eigenvalues µi there exists a matrix N such that

M = NMdN
−1 ⇔ Md = N−1MN. (22)

The p vectors φi, i = 1, . . . , p, with components

(φi)j = δij , (23)

are obviously eigenvectors of Md with eigenvalues µi . They are orthonormal for the scalar
product

〈φj |φk〉 = δjk. (24)

The vectors ψi = Nφi are obviously eigenvectors of the general M with the same eigenvalue.
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We now present a few results providing, in this rather general case, the general solution to
the question of existence and construction of a suitable scalar product 〈φ | ψ〉G, of a ‘parity’
operator P and of a ‘conjugation’ operator C.

(1) The vectors ψi are orthonormal for the Hermitian scalar product defined by

〈ψ |φ〉
G

= ψ †Gφ, with G = (N−1)†N−1. (25)

Indeed

δjk = 〈φj |φk〉
= 〈N−1ψj |N−1ψk〉
= ψ

†
j (N

−1)†N−1ψk

= ψ
†
jGψk

= 〈ψj |ψk〉G
. (26)

Because of the form of G (25) all the requirements of the scalar product are met. Note
however that if N is unitary, then G is the identity matrix; otherwise, it depends upon the
structure of N. This means that while Hermitian conjugation can be defined universally
for Hermitian Hamiltonians, in the non-Hermitian case, it is a more specific matrix. Two
matrices M lead to the same metric G if the N which defines the first one is equal to the N
which defines the second multiplied by an arbitrary unitary matrix.

(2) We denote complex by T the symbolic operator which performs the c-number
conjugation, T

T A = A∗T . (27)

In the following we now prove that there exists always a matrix P (generically called
‘parity’ as Bender suggested) which has the following property:

(PT )M = M(PT ) PM∗ = MP. (28)

Take any invertible matrix K which commutes with Md ,

KMd = MdK. (29)

In particular any diagonal matrix will do if the eigenvalues since are all different. If some
eigenvalues are equal, K may belong to the stability group of Md . Then

P = NK(N∗)−1. (30)

Indeed, from (28), we find

P(NMdN
−1)∗ = NMdN

−1P by (22)

PN∗Md(N
−1)∗ = NMdN

−1P (31)

(N−1PN∗)Md = Md(N
−1PN∗).

Using (30) and (31), the statement is proved.
(3) The matrix C (conjugation) is defined as having the following property:

CM = MC C2 = 1. (32)

The general solution for C is

C = NKsN
−1 (33)
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where Ks is such it commutes with Md and K2
s = 11. In the generic case, Ks is a diagonal

matrix with elements ± only. Up to a trivial overall sign, there are 2p−1 independent C.
Indeed the first equation of (28) gives

CM = MC CNMdN
−1 = NMdN

−1C by (22)

(N−1CN)Md = Md(N
−1CN)

(34)

which implies that N−1CN = Ks commutes with Md . The second equation implies
moreover that

K2
s = 11. (35)

In the two-dimensional example given in section 3 after (15), C is either the identity
matrix or the matrix

C = 1

�

[
s1 − s2 2s3

2s4 s2 − s1

]
(36)

up to sign.

7. More bosonic creation operators

In this section, we elaborate on two- or more-particle states obtained for the simplest
Hamiltonian (2). We will treat in great detail the two- and four-particle states.

7.1. Two-particle states

Let us first elaborate on the two-particle states constructed from the operators of section 2.
Suppose that we were to start with the products b

†
1, i = 1, 2, 3 of two creation operators

b
†
1 = (

a
†
1

)2
b
†
2 = a

†
1a

†
2 b

†
3 = (

a
†
2

)2
(37)

which construct the three two-particle states b
†
i |0〉, i = 1, 2, 3 when applied to the vacuum of

the ai operators. The corresponding three-dimensional matrix M is

M [2] =
2s1 s3 0

2s4 s1 + s2 2s3

0 s4 2s2

 . (38)

It satisfies (with H from (2))[
H, b

†
i

] = M
[2]
ji b

†
j (39)

and hence

Hb
†
i |0〉 = M

[2]
ji b

†
j |0〉. (40)

The diagonalization of M provides the two-particle spectrum. Using � from (5), we find, as
expected, three eigenstates β+

i which fulfil the eigenvalue equation (with H from (2))

Hβ+
i |0〉 = µiβ

+
i |0〉 (41)

They are up to a factor, obviously from (2)

β+
1 = −2s2

3b
†
1 + 2s3(−� + s1 − s2)b

†
2 + (�(s1 − s2) − (s1 − s2)

2 − 2s3s4)b
†
3 ∝ (

α+
1

)2

β+
2 = −s3b

†
1 + (s1 + s2)b

†
2 + s4b

†
3 ∝ α+

1 α+
2 (42)

β+
3 = −2s2

3b
†
1 + 2s3(� + s1 − s2)b

†
2 + (−�(s1 − s2) − (s1 − s2)

2 − 2s3s4)b
†
3 ∝ (

α+
2

)2
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with eigenvalues (see (15))

µ1 = s1 + s2 + � = E2,2 = 2E1,1

µ2 = s1 + s2 = E2,0 = E1,1 + E1,−1

µ3 = s1 + s2 − � = E2,−2 = 2E1,−1.

(43)

This discussion suggests the following question: ‘how can this spectrum be obtained
directly from the operators defining the two-particle space?’ The underlying problem with
the construction of a two-particle Hamiltonian out of the single-particle operators is that it is
impossible to build operators which we call b̃i satisfying canonical commutation relations. To
remedy this difficulty, two paths can be tried.

(1) A first naı̈ve attempt is as follows. Introduce symbolically the new operators b̃i which are
supposed, with the b

†
j , to satisfy the canonical commutation relations[̃

bi, b
†
j

] = δij (44)

and define a two-particle Hamiltonian H [2]
naive as

H [2]
naive = b

†
i M

[2]
ij b̃j . (45)

Then obviously but, we insist, symbolically we obtain[
H [2]

naive, b
†
i

] = M
[2]
ji b

†
j (46)

and on a vacuum |0[2]〉 such that

b̃j |0[2]〉 = 0 (47)

we obtain

H [2]
naiveb

†
i |0[2]〉 = M

[2]
ji b

†
j |0[2]〉. (48)

It is not difficult to see that it is impossible to construct b̃i satisfying (44) out of products
of two aj . However if the vacuum |0[2]〉 is thought to be the a vacuum |0〉

|0[2]〉 := |0〉 (49)

and the weaker condition (compared with (44))[̃
bi, b

†
j

]|0〉 = b̃ib
†
j |0〉 = δij |0〉 (50)

is imposed, the b̃i can be identified to be

b̃1 = 1
2b1, b̃2 = b2, b̃3 = 1

2b3 (51)

in the weak sense with, obviously, b1 = a2
1, b2 = a1a2, b3 = a2

3 . Equation (48) then
holds.

(2) In a second approach, one tries to construct directly an H [2] quadratic both in a
†
i and in ai

and which satisfies the basis equation (46)[
H [2], b

†
i

]|0〉 = M
[2]
ji b

†
j |0〉 (52)

as a result of the basic ai canonical commutation relations (3).
Such a Hamiltonian does not exist in the strong sense (when the vacuum is removed in
(52)). In the weak sense, it exists as

H [2] = b
†
i N

[2]
ij bj , (53)

where the matrix N [2] is

N [2] =
s1 s3 0

s4 s1 + s2 s3

0 s4 s2

 . (54)

This result is obviously equivalent to the naı̈ve approach once the b̃i are expressed in
terms of the bi (51).
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7.2. Four-particle states

Let us proceed in the same way for the four-particle states which can be thought either directly
as the four-particle states in the original operators

(
a
†
i , i = 1, 2

)
(3)

d
†
i = (

a
†
1

)5−i(
a
†
2

)i−1
, i = 1, . . . , 5 (55)

or as the compound states constructed out of two of the basic two-particle states b
†
i , i = 1, 2, 3

(37)

ď
†
1 = (

b
†
1

)2
, ď

†
2 = b

†
1b

†
2, ď

†
3 = b

†
1b

†
3,

ď
†
4 = (

b
†
2

)2
, ď

†
5 = b

†
2b

†
3, ď

†
6 = (

b
†
3

)2
.

(56)

Let us note immediately that there are only five states built with the five d
†
i while there

are six states built with the six ď
†
i . This is because

ď
†
3 ≡ ď

†
4 (57)

when constructed from the a′.
Let us treat in succession the d

†
i case and the ď

†
i case. In terms of the construction of (56),

the states ď
†
3|0[2]〉 and ď

†
4|0[2]〉 both have the same energy. We are going to demonstrate the

resolution of this situation by explicit calculation. Indeed, in general, starting from our original
Hamiltonian (2), the four-particle state matrix, in terms of the b

†
i , is not fully diagonalizable.

It is only reducible to a Jordan normal form. This is one of the few instances where the
occurrence of a Jordan form appears in a physical context.

• The 5 × 5 matrix M [4], analogous to (38) and defined by[
H, d

†
i

] = M
[4]
ji d

†
j , (58)

is

M [4] =


4s1 s3 0 0 0
4s4 3s1 + s2 2s3 0 0
0 3s4 2(s1 + s2) 3s3 0
0 0 2s4 s1 + 3s2 4s3

0 0 0 s4 4s2

 . (59)

From this expression, it is easy to generalize the general form for states with n original
particles. Its eigenvalues and eigenstates, analogous to (42) and (43) can be read off
explicitly in (11) and (15).

Note that, in the weak sense, there is a Hamiltonian H [4] which may be written directly
in terms of the dj and d

†
j[

H [4], d
†
i

]|0〉 = M
[4]
ji d

†
j |0〉 (60)

and is

H [4] = d
†
i N

[4]
ij dj (61)

with

N [4] = 1

6


s1 s3 0 0 0
s4 3s1 + s2 3s3 0 0
0 3s4 3(s1 + s2) 3s3 0
0 0 3s4 s1 + 3s2 s3

0 0 0 s4 s2

 . (62)
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• Let us now try to define the 6 × 6 matrix M̌ [4] in the same way for the ď
†
i[

H [2]
naive, ď

†
i

] = M̌
[4]
ji ď

†
j . (63)

Again, starting from the same canonical commutation relations for the b
†
i ’s and b̃j (44),

we find

M̌
[4]
ij =



4s1 s3 0 0 0 0
4s4 3s1 + s2 2s3 2s3 0 0
0 s4 2(s1 + s2) 0 s3 0
0 2s4 0 2(s1 + s2) 2s3 0
0 0 2s4 2s4 s1 + 3s2 4s3

0 0 0 0 s4 4s2


. (64)

Since the d
†
i are perfectly defined there is no ambiguity. However, coherence with (57)

implies that an arbitrary combination of ď
†
3 − ď

†
4 can be added to the right-hand side of

(63), and M̌
[4]′
ij can be replaced by

M̌
[4]′
ij = M̌

[4]
ij + rj δi3 − rj δi4, (65)

namely,

M̌
[4]′
ij =



4s1 s3 0 0 0 0
4s4 3s1 + s2 2s3 2s3 0 0
r1 s4 + r2 2(s1 + s2) + r3 r4 s3 + r5 r6

−r1 2s4 − r2 −r3 2(s1 + s2) − r4 2s3 − r5 −r6

0 0 2s4 2s4 s1 + 3s2 4s3

0 0 0 0 s4 4s2


. (66)

Making the same combination for the left-hand side, it can easily be checked that[
H [2]

naive, ď
†
3 − ď

†
4

] = (2s1 + 2s2 + r3 − r4)
(
ď
†
3 − ď

†
4

)
(67)

i.e. a combination of ď
†
3 − ď

†
4 only. This result is coherent when ď

†
3 − ď

†
4 is put to zero.

The eigenvalues of the matrix M̌
[4]′
ij depend upon the values of the arbitrary parameters ri

since the secular equation is

(λ − E4,4)(λ − E4,−4)(λ − E4,2)(λ − E4,−2)(λ − E4,0)(λ − E4,0 − r3 + r4). (68)

When r4 �= r3, the eigenvalues are all different and the matrix can be diagonalized.
When r4 = r3, two eigenvalues become equal. Then there is always the eigenvector
(0, 0, 1,−1, 0, 0)tp. The condition for the existence of a second eigenvector is

r6s
2
4 + 2r5s1s4 − 2r5s2s4 + r3(s1 − s2)

2 − 2r3s3s4 − 2r2s1s3 + 2r2s2s3 + r1s
2
3 = 0. (69)

When this condition is satisfied, the matrix can be transformed to a fully diagonal form;
otherwise it is reducible to a Jordan normal form

E4,4 0 0 0 0
0 E4,2 0 0 0 0
0 0 E4,0 1 0 0
0 0 0 E4,0 0 0
0 0 0 0 E4,−2 0
0 0 0 0 0 E4,−4


. (70)



Fock space representations for non-Hermitian Hamiltonians 3621

8. Extension to a Fock space

We shall now promote the discussion to the case of a Fock space Hamiltonian linear in the
products of one creation and one annihilation operator a

†
i aj of bosons of two (or more) different

species. The operators N (analogous to the matrix N of (22)) now become functions of the
creation and annihilation operators

(
aj , a

†
j

)
which satisfy the usual canonical commutation

relations (see (3)).
In analogy with the two-dimensional case (14) and with the discussion of the preceding

section, the diagonal Hamiltonian is defined as

Hd =
∑

j

µja
†
j aj (71)

and the related Hamiltonian H by

H = NHdN
−1 (72)

which should be linear in the products a
†
i aj since this is a free field theory. Suppose

NaiN
−1 =

∑
j

c
[1]
ij aj (≡αi) Na

†
i N

−1 =
∑

j

d
[1]
ij a

†
j

(≡α
†
i

)
, (73)

where the cij and dij are arbitrary complex numbers. The two related matrices are chosen
to be invertible in order to keep the number of independent degrees of freedom unchanged.
Indeed, we then find

H =
∑

j

µj

(∑
k

d
[1]
jk a

†
k

) (∑
m

c
[1]
jmam

)
=

∑
k

∑
m

∑
j

µjd
[1]
jk c

[1]
jm

 a
†
kam. (74)

If an interpretation in terms of creation and annihilation operators is to remain, the right-hand
sides of (73) should obey the same commutation relations (3) as the a. This implies for the
matrices c and d having respectively cij and dij as components the restrictions

d [1]tp = (c[1])−1. (75)

After some algebra, using (75) and defining

d [2] = d [1] − 11, (76)

one finds

[ai, N] = d
[2]tp
ij Naj (77)[

N, a
†
i

] = d
[2]
ij a

†
jN. (78)

Using a power expansion of N in terms of the a, it is easy to show that the quadratic part of N
is

Q =
∑
ij

d
[2]
ij a

†
j ai, (79)

and that the general N is constructed from Q as

N =: exp(Q) : (80)

where the symbol : . . . : denotes the normal product (annihilation operators written at the right
of creation operators). Indeed, we have

[ai, N ] = ∂
a
†
i

: exp(Q) :

=: exp(Q) :
(
∂
a
†
i
Q

)
= N

∑
j

d
[2]
ji aj

 ⇔ equation (77) (81)
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but also [
N, a

†
i

] =: ∂ai
exp(Q) :

=:
(
∂ai

Q
)

exp(Q) :

=
∑

j

d
[2]
ij a

†
j

 N ⇔ equation (78). (82)

This completes the proof of (80).
It is then not difficult to see that, inversely, any H of the form

H = hija
†
j ai (83)

can be put into diagonal form Hd by using the inverse of N and adjusting the coefficient
c[1], d [1] suitably. The µ are the eigenvalues of the matrix constructed with the hij which is
supposed to be diagonalizable at this stage.

In particular for the case of p = 2, this can be read off directly for an arbitrary H from
formulae (6)–(9) for the coefficient c[1], d [1] of equation (73).

Our arguments about the existence of a Hermitian Hamiltonian when the eigenvalues are
real also applies to the infinite-dimensional case. While we were concluding this paper, a
paper by Mostafadazeh [9] appeared, demonstrating that a quantum mechanical anharmonic
oscillator with potential ix3 giving rise to a non-Hermitian Hamiltonian can be transformed to
a Hermitian form, thus giving an alternative proof of the reality of energy eigenvalues.

9. Conclusions

The Landau problem of a particle in a magnetic field has been shown to demonstrate the
phenomenon of a non-Hermitian Hamiltonian giving rise to real eigenvalues when the coupling
to the magnetic field becomes pure imaginary. All properties of this model are explicitly
calculable as it is really a free field theory in disguise, which illuminates the conditions under
which non-Hermitian Hamiltonians may have real eigenvalues. Indeed, starting from real
eigenvalues in a finite system, which is then subject to a similarity transform, it has been
shown how to define creation and annihilation operators, and their conjugation to build a
Fock space for a general non-Hermitian Hamiltonian. Since diagonalizable matrices with
real eigenvalues are transformable by unitary transformations to Hermitian ones, the PT
symmetric examples of Bender with (ix)n potentials must be transformable to Hermitian
systems. However our own attempt to find an equivalent Hermitian system led to an rather
complicated one in terms of a power series, as did a similar attempt in the literature by Bender
et al. Thus it may be that some systems exhibit their simplest form in a non-Hermitian, PT
symmetric form.

Other properties of such systems have been discussed, notably the conditions for
degenerate eigenvalues. In the 2 × 2 case and extensions thereof, this is a sign that the
associated matrix is not fully diagonalizable and marks the transition between real and complex
conjugate pairs of eigenvalues.
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